259 research outputs found

    The ecology of seamounts: structure, function, and human impacts.

    Get PDF
    In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research

    Sandy beaches at the brink

    Get PDF
    Sandy beaches line most of the world’s oceans and are highly valued by society: more people use sandy beaches than any other type of shore. While the economic and social values of beaches are generally regarded as paramount, sandy shores also have special ecological features and contain a distinctive biodiversity that is generally not recognized. These unique ecosystems are facing escalating anthropogenic pressures, chiefly from rapacious coastal development, direct human uses — mainly associated with recreation — and rising sea levels. Beaches are increasingly becoming trapped in a ‘coastal squeeze’ between burgeoning human populations from the land and the effects of global climate change from the sea. Society’s interventions (e.g. shoreline armouring, beach nourishment) to combat changes in beach environments, such as erosion and shoreline retreat, can result in severe ecological impacts and loss of biodiversity at local scales, but are predicted also to have cumulative large-scale consequences worldwide. Because of the scale of this problem, the continued existence of beaches as functional ecosystems is likely to depend on direct conservation efforts. Conservation, in turn, will have to increasingly draw on a consolidated body of ecological theory for these ecosystems. Although this body of theory has yet to be fully developed, we identify here a number of critical research directions that are required to progress coastal management and conservation of sandy beach ecosystems

    Setback distances as a conservation tool in wildlife-human interactions : testing their efficacy for birds affected by vehicles on open-coast sandy beaches

    Get PDF
    In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (> 25 m) and vehicle speeds to be slow (< 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviou

    Setback distances as a conservation tool in wildlife-human interactions : testing their efficacy for birds affected by vehicles on open-coast sandy beaches

    Full text link
    In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (> 25 m) and vehicle speeds to be slow (< 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviou

    A protective role for BRCA2 at stalled replication forks

    Get PDF
    The hereditary breast and ovarian cancer predisposition genes BRCA1 and BRCA2 account for the lion's share of heritable breast cancer risk in the human population. Loss of function of either gene results in defective homologous recombination (HR) and triggers genomic instability, accelerating breast tumorigenesis. A long-standing hypothesis proposes that BRCA1 and BRCA2 mediate HR following attempted replication across damaged DNA, ensuring error-free processing of the stalled replication fork. A recent paper describes a new replication fork protective function of BRCA2, which appears to collaborate with its HR function to suppress genomic instability

    Human gene-engineered calreticulin mutant stem cells recapitulate MPN hallmarks and identify targetable vulnerabilities

    Get PDF
    Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.Johannes Foßelteder, Gabriel Pabst, Tommaso Sconocchia, Angelika Schlacher, Lisa Auinger, Karl Kashofer, Christine Beham-Schmid, Slave Trajanoski, Claudia Waskow, Wolfgang Schöll, Heinz Sill, Armin Zebisch, Albert Wölfler, Daniel Thomas, and Andreas Reinisc

    A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12

    Get PDF
    BACKGROUND: Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation. RESULTS: The ability of E. coli cells to develop swarming migration on semisolid surfaces was suppressed in the absence of RecA. However, swimming motility was not affected. The swarming defect of a ΔrecA strain was fully complemented by a plasmid-borne recA gene. Although the ΔrecA cells grown on semisolidsurfaces exhibited flagellar production, they also presented impaired individual movement as well as a fully inactive collective swarming migration. Both the comparative analysis of gene expression profiles in wild-type and ΔrecA cells grown on a semisolid surface and the motility of lexA1 [Ind-] mutant cells demonstrated that the RecA effect on swarming does not require induction of the SOS response. By using a RecA-GFP fusion protein we were able to segregate the effect of RecA on swarming from its other functions. This protein fusion failed to regulate the induction of the SOS response, the recombinational DNA repair of UV-treated cells and the genetic recombination, however, it was efficient in rescuing the swarming motility defect of the ΔrecA mutant. The RecA-GFP protein retains a residual ssDNA-dependent ATPase activity but does not perform DNA strand exchange. CONCLUSION: The experimental evidence presented in this work supports a novel role for RecA: the promotion of swarming motility. The defective swarming migration of ΔrecA cells does not appear to be associated with defective flagellar production; rather, it seems to be associated with an abnormal flagellar propulsion function. Our results strongly suggest that the RecA effect on swarming motility does not require an extensive canonical RecA nucleofilament formation. RecA is the first reported cellular factor specifically affecting swarming but not swimming motility in E. coli. The integration of two apparently disconnected biologically important processes, such as the maintenance of genome integrity and motility in a unique protein, may have important evolutive consequences
    corecore